On the choosability of complete multipartite graphs with part size three
نویسندگان
چکیده
منابع مشابه
Integral complete multipartite graphs
A graph is called integral if all eigenvalues of its adjacency matrix are integers. In this paper, we investigate integral complete r-partite graphsKp1,p2,...,pr =Ka1·p1,a2·p2,...,as ·ps with s=3, 4.We can construct infinite many new classes of such integral graphs by solving some certain Diophantine equations. These results are different from those in the existing literature. For s = 4, we giv...
متن کاملRamsey numbers in complete balanced multipartite graphs. Part II: Size numbers
The notion of a graph theoretic Ramsey number is generalised by assuming that both the original graph whose edges are arbitrarily bi–coloured and the sought after monochromatic subgraphs are complete, balanced, multipartite graphs, instead of complete graphs as in the classical definition. We previously confined our attention to diagonal multipartite Ramsey numbers. In this paper the definition...
متن کاملDecompositions of complete multipartite graphs
This paper answers a recent question of Dobson and Marušič by partitioning the edge set of a complete bipartite graph into two parts, both of which are edge sets of arctransitive graphs, one primitive and the other imprimitive. The first member of the infinite family is the one constructed by Dobson and Marušič.
متن کاملComplete subgraphs in multipartite graphs
Turán’s Theorem states that every graphG of edge density ‖G‖/ (|G| 2 ) > k−2 k−1 contains a complete graph K and describes the unique extremal graphs. We give a similar Theorem for `-partite graphs. For large `, we find the minimal edge density d` , such that every `-partite graph whose parts have pairwise edge density greater than d` contains a K . It turns out that d` = k−2 k−1 for large enou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2000
ISSN: 0012-365X
DOI: 10.1016/s0012-365x(99)00157-0